You are here

Hypercomplex Disaster Simulations

Shisuke Takase, Hachinohe Institute of Technology 

Seizo Tanaka, University of Tsukaba

Mitsuteru Asai, Kyushu University

Kenjiro Terada, Tohoku University

Casey Dietrich, North Carolina State University

This mini-symposium is intended to discuss the development of novel simulation methods for a variety of natural disasters such as tsunami, flood, storm surge, landslide and etc., which are associated with advanced fluid modeling and analysis schemes. Since the problems to be solved have the nature of multiphase, multiphysics, multiscale and multistage phenomena, our numerical simulations inevitably become "hypercomplex". For example, the methods of numerical simulations necessitate the treatment of moving interface such as water surface and run-up waterfront, the representation of transition from solid to fluid and the characterization of fluid-solid interaction. Also, the capabilities of these simulation methods are demonstrated with reasonable verification strategies and the simulation results must be validated whether or not high accuracy is guaranteed with reference to reliability experimental data. This mini-symposium expected to foster the exchange of the ideas and the information about the related numerical schemes so as to be contributory to disaster prevention and mitigation in the near future.

Topics of interest include:
Methodology of numerical simulations for natural disaster modeling of tsunami, flood and storm surge, Modeling of boulder flow, landslide and avalanche, Fluid-structure interaction simulations, Damage estimation for structures, Disaster prevention and mitigation, Uncertainty quantification, Verification and validation, Data-driven approaches and etc. Enhancement of individual numerical schemes in finite elements, finite difference, finite volume and particle methods.